Summary: PRRSV-Vaccinated, Seronegative Sows and Maternally Derived Antibodies:
Impact on PRRSV-1 Challenge Outcomes in Piglets
Jorian Fiers1,2,* Dominiek Maes2, Ann-Brigitte Cay1,2, Laurent Mostin3, Anna Parys3 and Marylène Tignon1
1Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Belgium; 2Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Belgium; 3Unit Experimental Centre, Department Infectious Diseases in Animals, Belgium

Key Findings:
- The influence of maternally-derived antibodies (MDAs) on PRRSV-infection was investigated by challenging piglets born to both PRRSV-vaccinated seropositive sows and PRRSV-vaccinated but seronegative sows (non-responders to vaccination).
- Piglets born to PRRSV-vaccinated seronegative sows have increased viral replication and nasal shedding in the first days post-challenge.
- Piglets born to PRRSV-vaccinated seronegative sows lacking PRRSV-specific maternally-derived antibodies (MDAs) showed an earlier and more intense seroconversion, leading to significantly higher antibody titers at 10 days post challenge compared to the piglets have PRRSV-specific MDAs.

Introduction
PRRSV vaccines can be administered to both sows and piglets to aid in reducing the negative consequences of the disease. Both modified live vaccines (MLVs) and inactivated/killed vaccines are used in the field. However, field reports have stated the presence of ELISA seronegative sows, despite repeated vaccination against PRRSV. Piglets born from these PRRSV-vaccinated but seronegative sows lacked the presence of PRRSV-specific maternally-derived antibodies (MDAs). Thus, they showed a stronger vaccine viremia and earlier seroconversion compared to piglets born from PRRSV-vaccinated seropositive sows who had the presence of MDAs. In this study, the influence of MDAs on PRRSV-infection was investigated by experimentally challenging four-weeks-old pigs born from both PRRSV-vaccinated seronegative, and PRRSV-vaccinated seropositive sows.

Material & Methods
Piglets included in the study (n = 36) originated from a Belgian farrow-to-finish herd in which the sow population was routinely vaccinated with a modified live vaccine against PRRSV. Eighteen piglets were born from three PRRSV-seropositive sows (responders to vaccination) and had a clear presence of PRRSV-specific MDAs (E+ piglets). The other eighteen piglets were born from three PRRSV-seronegative sows (non-responders to vaccination) and did not have PRRSV-specific MDAs (E− piglets). In each group, twelve piglets were intranasally challenged with 2 mL of a 10^{5.5} TCID_{50}/ml dose of the heterologous PRRSV-1 07V063 strain, the remaining piglets were mock-challenged (PBS) and served as controls.

Results
During the first days after infection, higher serum viremia and nasal shedding were observed in the challenged E− piglets compared to the challenged E+ piglets (Figure 1). However, at 10 days post-infection, the peak serum viremia was significantly higher in the E+ piglets in comparison to the E− piglets and serum viremia remained slightly higher in this group until the end of the study. Additionally, the two challenged groups had a different immune response to the PRRSV infection. The E− challenged piglets showed an earlier and more intense seroconversion, leading to significantly higher antibody titers at 10 days post-infection (dpi) compared to the E+ challenged piglets. Furthermore, a trend towards both higher induction of serum IFN-γ and higher induction of IFN-γ secreting cells was observed in the E− challenged piglets. In contrast, a significantly higher induction of serum TNF-α at 7 dpi was seen in the E+ challenged piglets compared to the E− challenged piglets.

Discussion
The results gathered in this study suggest that PRRSV-specific MDAs induce partial protection during the early stages of infection but are not sufficient to protect against a high challenge dose. The presence of piglets lacking PRRSV-specific MDAs might pose a risk for PRRSV infection and enhanced transmission in pig farms in young piglets.

The full article is available at: https://doi.org/10.3390/vaccines11121745.