

Isolation of porcine reproductive and respiratory syndrome virus from feed ingredients and complete feed, with subsequent RT-qPCR analysis

Allison K. Blomme, Tate L. Ackerman, Cassandra K. Jones, Jordan T. Gebhardt, Jason C. Woodworth, Chad B. Paulk, Roman M. Pogranichniy – Kansas State University

Introduction

Although the half-life of PRRSV is shorter in feedstuffs than in other matrix types, there is evidence that it can survive in feedstuffs, which could be a concern for the introduction of virus into a farm. The most common method for the detection of PRRSV or any other virus in animal feed is by using PCR and non-standardized extraction methods. An assay using MARC-145 cells to determine infectivity would allow for faster, more cost-effective identification of infectious PRRSV in animal feed. Therefore, we used virus isolation (VI) to determine tissue culture infectivity and RT-qPCR to determine the stability of PRRSV strain P129 in solvent-extracted soybean meal (SBM), dried distillers grains with solubles (DDGS), complete swine feed (FEED), or medium (DMEM) at 4°C, 23°C, or 37°C for up to 3 d.

Methods

Three feed matrices were used (SBM, DDGS, and FEED [a swine gestation diet with 78% corn, 17% soybean meal, and 0.5% fat]). 10 g of each were inoculated with 1 mL of type 2 PRRSV strain P129 with a concentration of 10^{5.4} TCID₅₀/mL for a final concentration of 10^{4.4} TCID₅₀/g of matrix and incubated at 3 temperatures (4, 23, and 37°C). Samples of each treatment were taken at regular intervals (1, 24, 48, and 72 h post-inoculation - hpi) and processed. Supernatant was titrated and used to inoculate confluent MARC-145 cells to determine infectivity. RNA was extracted from each supernatant sample and tested by RT-qPCR to determine any change in detectable virus RNA across matrix type, temperature, and time.

Results

An interaction (p = 0.028) was observed for matrix × temperature × hour for live virus detected by VI (Table 1). At 4°C, the concentration of infectious virus was greatest in DMEM, intermediate in SBM, and lowest in DDGS and FEED. DMEM also had the greatest concentration of infectious PRRSV at 23°C over time; a higher infectious virus concentration was maintained in SBM for longer than in DDGS or FEED. At 37°C, a greater concentration of infectious virus was sustained in DMEM than in the feedstuffs, with concentrations decreasing until 48 h post-inoculation. Only matrix type influenced the quantity of viral RNA detected by RT-qPCR (p = 0.032).

Table 1. Effects of matrix type, hour post-inoculation, and storage temperature on infectivity of PRRSV assessed by virus isolation.

Matrix/h	4°C		23°C		37°C			
	Log ₁₀ TCID ₅₀ /mL	Proportion positive	Log ₁₀ TCID ₅₀ /mL	Proportion positive	Log ₁₀ TCID ₅₀ /mL	Proportion positive	- SEM	<i>p</i> *
DMEM							0.308	0.028
1	3.61 ^{a,b}	2/2	2.94 ^{a,b,c,d}	2/2	3.50 ^{a,b}	2/2		
24	3.75 ^a	2/2	3.00 ^{a,b,c,d}	2/2	1.94 ^{e,f,g,h,i,j}	2/2		
48	3.39 ^{a,b,c}	2/2	2.67 ^{b,c,d,e}	2/2	0.78 ^{k,l,m,n}	1/2		
72	3.72 ^a	2/2	2.22 ^{d,e,f,g,h,i}	2/2	0.42 ^{m,n}	1/2		
SBM							0.377	
1	2.83 ^{a,b,c,d,e}	2/2	1.67 ^{f,g,h,i,j,k}	2/2	1.00 ^{j,k,l,m,n}	2/2		
24	3.00 ^{a,b,c,d}	2/2	1.25 ^{i,j,k,l,m}	1/2	0.00 ⁿ	0/2		
48	2.67 ^{b,c,d,e,f}	2/2	0.00 ⁿ	0/2	0.00 ⁿ	0/2		
72	2.50 ^{c,d,e,f,g}	2/2	0.83 ^{k,l,m,n}	2/2	0.00 ⁿ	0/2		
DDGS							0.377	
1	2.33 ^{d,e,f,g,h}	2/2	0.42 ^{m,n}	1/2	0.00 ⁿ	0/2		
24	1.50 ^{g,h,i,j,k,l}	2/2	0.58 ^{l,m,n}	1/2	0.00 ⁿ	0/2		
48	1.33 ^{h,i,j,k,l,m}	2/2	0.42 ^{m,n}	1/2	0.00 ⁿ	0/2		
72	0.92 ^{k,l,m,n}	1/2	0.00 ⁿ	0/2	0.00 ⁿ	0/2		
FEED							0.377	
1	0.75 ^{k,l,m,n}	1/2	1.00 ^{j,k,l,m,n}	2/2	0.58 ^{l,m,n}	1/2		
24	0.42 ^{m,n}	1/2	1.00 ^{j,k,l,m,n}	2/2	0.00 ⁿ	0/2		
48	0.00 ⁿ	0/2	0.00 ⁿ	0/2	0.00 ⁿ	0/2		
72	0.42 ^{m,n}	1/2	0.00 ⁿ	0/2	0.00 ⁿ	0/2		

Conclusion

More viral RNA was detected in the virus control than in DDGS; SBM and FEED were intermediate. By VI, we found that infectious virus could be harbored in SBM, DDGS, and FEED for a short time.

The full paper can be found at: https://doi.org/10.1177/10406387231185080

